Matrices with Low-Rank-Plus-Shift Structure: Partial SVD and Latent Semantic Indexing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrices with Low-Rank-Plus-Shift Structure: Partial SVD and Latent Semantic Indexing

We present a detailed analysis of matrices satisfying the so-called low-mnk-plus-shift property in connection with the computation of their partial singular value decomposition. The application we have in mind is Latent Semantic Indexing for information retrieval where the termdocument matrices generated from a text corpus approximately satisfy this property. The analysis is motivated by develo...

متن کامل

Clustered SVD strategies in latent semantic indexing

The text retrieval method using Latent Semantic Indexing (LSI) technique with truncated Singular Value Decomposition (SVD) has been intensively studied in recent years. The SVD reduces the noise contained in the original representation of the term-document matrix and improves the information retrieval accuracy. Recent studies indicate that SVD is mostly useful for small homogeneous data collect...

متن کامل

Clustered SVD strategies in latent semantic indexing q

The text retrieval method using latent semantic indexing (LSI) technique with truncated singular value decomposition (SVD) has been intensively studied in recent years. The SVD reduces the noise contained in the original representation of the term–document matrix and improves the information retrieval accuracy. Recent studies indicate that SVD is mostly useful for small homogeneous data collect...

متن کامل

Parallel Svd Computation in Updating Problems of Latent Semantic Indexing ∗

In latent semantic indexing, the addition of documents (or the addition of terms) to some already processed text collection leads to the updating of the best rank-k approximation of the term-document matrix. The computationally most intensive task in this updating is the computation of the singular value decomposition (SVD) of certain square matrix, which is upper or lower triangular, and conta...

متن کامل

Updating the partial singular value decomposition in latent semantic indexing

Latent semantic indexing (LSI) is a method of information retrieval that relies heavily on the partial singular value decomposition (PSVD) of the term-document matrix representation of a dataset. Calculating the PSVD of large term-document matrices is computationally expensive; hence in the case where terms or documents are merely added to an existing dataset, it is extremely beneficial to upda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2000

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479898344443